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Abstract  

The article presents the Bermuda component of the NLPUF text-to-speech toolbox. Bermuda performs phonetic transcription for 
out-of-vocabulary words using a Maximum Entropy classifier and a custom designed algorithm named DLOPS. It offers direct 
transcription by using either one of the two available algorithms, or it can chain either algorithm to a second layer Maximum Entropy 
classifier designed to correct the first-layer transcription errors. Bermuda can be used outside of the NLPUF package by itself or to 
improve performance of other modular text-to-speech packages. The training steps are presented, the process of transcription is 
exemplified and an initial evaluation is performed. The article closes with usage examples of Bermuda.  
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1. Introduction 

The last years have brought about a dramatic increase in 

the performance of human-computer interaction tools and 

techniques. This has naturally led to their successful 

application in Information-Technology and related fields. 

Consequently, accessibility to digital resources for elderly 

or disabled people is enabled by diverse methods such as 

better text organization and navigation, improved text 

input methods or better text reading using text-to-speech 

tools. 

We present the Natural Language Processing Unified 

Framework (NLPUF) for text-to-speech (TTS) synthesis, 

which is part of the deliverables within the METANET4U 

project
1
. It comprises of a set of NLP tools and a speech 

synthesis module that can all be used together or as 

standalone packages. Its functionality consists of text 

normalization, phonetic transcription, homograph 

disambiguation, prosodic synthesis and speech synthesis, 

each of the functions being performed by different tools in 

the package. The speech synthesis component uses 

concatenative unit selection and can be easily integrated 

with other speech synthesis engines such as MBROLA 

(Dutoit et al., 1996) or HTS (Zen et al., 2007). 

NLPUF is under development at the moment, but it is 

nearing completion. Before a TTS system can synthetize 

voice starting from arbitrary text, certain tasks have to be 

performed by the Natural Language Processing (NLP) 

module of the TTS system. The NLP module deals with 

text normalization, phonetic transcription, prosody 

analysis etc. Text normalization refers to the expansion of 

acronyms, abbreviations, numeric or mathematical 

expressions, etc., while prosody analysis tries to learn 

how to mimic speech phenomena such as rhythm, stress 

and intonation starting from text (Huang et al., 2001).  

In this paper we focus only on the phonetic transcription 

(PT) for out-of-vocabulary (OOV) words and the way PT 

can be used to improve text accessibility. The phonetic 

transcription of words can be obtained using lexicons for 
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known or common words in a target language, but there 

will always be OOV words (technical terms, proper nouns 

etc.) regardless of the lexicon’s size. In this situation, the 

system needs a method to predict OOV words’ 

pronunciation. This is one of the fragile steps of the 

pre-processing and analysis of text, because errors 

produced by incorrect transcription predictions can 

accumulate with errors from other modules (this is known 

as error propagation) on the way to the speech 

synthesizer (the part of the TTS that is responsible for the 

actual voice synthesis), leading to misreads of the original 

message. 

Also, presence of foreign words inside the text (a common 

issue in any type of text: news, novels, technical articles 

etc.) increases the complexity of the problem. Thus, 

phonetic transcription of OOV words would greatly 

benefit from language identification, which is still an 

unresolved problem for very short texts (da Silva and 

Lopes, 2006; Vatanen et al., 2010).  

In the case of NLPUF, phonetic transcription of OOV 

words is performed by Bermuda, a data-driven tool that 

uses Machine Learning (ML) techniques to best fit a 

phonetic transcription given an input word. As any other 

ML approach, it uses features, which in this case are based 

solely on the letters and groups of letters within the input 

word. While using more context sensitive data (part of 

speech, syllabification etc.) may provide better results in 

some cases, we intend to show that state of the art results 

can be obtained without using such data. Such an 

application is therefore much faster and does not require 

additional resources. Moreover, homograph 

disambiguation is not an issue here. Bermuda deals only 

with OOV words, which means it is impossible to predict 

that such words have two or more pronunciations that 

distinguish between their senses. The task of homograph 

disambiguation can only be performed on known words 

and it is handled by a different component in our 

framework. 
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2. The role of phonetic transcription in 
improving text accessibility 

Phonetic transcription (PT) has an important role in any 

TTS system. One of the objectives of speech synthesis 

from text is to allow the user to fully understand the 

message that is being transmitted. While prosody highly 

contributes to understanding the message, PT also has a 

notable impact. Incorrect PT can render an entire 

fragment meaningless and mispronunciation can lead to 

annoying results (e.g. the same word is mispronounced 

again and again in a phrase or paragraph) even if the 

information may sometimes be transmitted regardless of 

small erroneous transcriptions. PT errors can also add up 

to the prosody errors and have a negative impact on the 

overall system performance. 

Spelling correction or query alteration also link to text 

accessibility when taking into account that most relevant 

information found on the Internet is written in languages 

of international use and not all users are native speakers of 

such languages. Research has shown the possibility of 

using phonetic similarity as a feature for spelling 

correction (Li et al., 2006). A misspelled word can be 

corrected by using its PT. Table 1 shows an example 

where a misspelled word and its correct form produce 

identical PTs. 

 Word Phonetic transcription 

Correct Conceive k ax n s iy v 

Incorrect Conceiv k ax n s iy v 

 

Table 1: PTs for words “conceive” and “conceiv” 

produced by Bermuda 

 

In section 8 we show another example where web query 

alteration can benefit from the PT of words.  

3. Related Work 

Phonetic transcription in terms of letter-to-phoneme 

conversion (L2P) can be a simple task for languages 

where the relationship between letters and their phonetic 

transcription is simple (languages that are preponderantly 

characterized by having phonemic orthography, e.g. 

Romanian) but for other languages it poses a set of 

challenges. For example, current state of the art systems 

for English phonetic transcription of OOV words have an 

accuracy of 65% to 71% when used on the CMUDICT 

dictionary (Jiampojamarn et al., 2008). 

There are a series of different methods and approaches to 

L2P conversion from context sensitive grammars to using 

classifiers or techniques specific to part-of-speech 

tagging.  

A notable example of using a context sensitive grammar 

for writing L2P rules (pertaining to English and French) is 

given by Divay and Vitale (1997), although nowadays 

automatically inducing L2P rules is the main route 

followed by mainstream L2P research.  

The Expectation-Maximization (EM) algorithm 

(Dempster et al., 1977) (or variants of it) is used to find 

one-to-one or many-to-many alignments between letters 

and phonemes in (Black et al., 1998; Jiampojamarn et al., 

2008; Paget et al. 1998). The main idea of this algorithm 

is that, certain pairs of letters and phonemes are much 

more frequent than others and EM is employed in an 

effort to automatically detect the most probable 

alignments given a list of pairs of words and their 

transcriptions as training data. 

Another approach for PT uses Hidden Markov Models 

(HMMs). Given the L2P rules (i.e. the probability of a 

phoneme being generated by a letter and the probability of 

occurrence of a phoneme sequence), the problem of 

automatic PT can be restated as follows: find the optimum 

sequence of hidden states (phonemes) that account for the 

given observation (the OOV word that has been suitably 

segmented for this task). Research of this approach has 

been done by Taylor (2005) and Jiampojamarn et al. 

(2008). One interesting conclusion of their research is that 

more accurate results are achieved if the phonemic 

substrings are paired with letter substrings. The reason for 

this is that phonetic transcriptions are context dependent: 

at any given moment, the phoneme to be generated is 

dependent on the adjacent phonemes. Moreover, it also 

depends on a contextual window of letters of the given 

word (Demberg, 2007). 

4. A general view on Bermuda 

Bermuda implements 2 methods for the L2P conversion 

task. The first one employs a Maximum Entropy (ME) 

classifier (PTC) to predict the phonetic transcription of 

every letter in the context (word) and uses a set of features 

similar to the MIRA and Perceptron methods presented by 

Jiampojamarn et al. (2008). The second one uses DLOPS 

algorithm described in Boroş et al. (2012). Furthermore, 

each of the methods has been improved by employing 

another ME classifier (ERC) designed to correct common 

L2P errors made by these two methods. In addition to the 

features used by PTC, ERC uses new features based on 

the already predicted phonemes which have become 

available. In other words, Bermuda chains the first layer 

prediction (PTC or DLOPS) to a second layer ME 

classifier for error correction (ERC). This leads to an 

accuracy increase of 2% to 7%. 

We aim to show how Bermuda can be used outside of the 

NLPUF package, as a stand-alone application, to improve 

performance in other modular TTS packages. 

5. Phonetic Transcription as an Alignment 
Problem 

All data-driven L2P systems require letter to phoneme 

alignment before a model for phonetic transcription can 

be created. This section presents a method for obtaining 

such an alignment that is easy to implement. PT can be 

viewed as a translation process from the written form of 

the word (the “source language”) to its phonetic 

representation (the “target language”) (Laurent et al. 

2009). Because aligning between words and phonetic 

transcriptions is similar to training a translation model, it 

is possible to use a well-known tool, explicitly designed 

for this kind of task: GIZA++ (Och and Ney, 2003). 



GIZA++ is a free toolkit designed for aligning items in a 

parallel corpus, often used in the Statistical Machine 

Translation (SMT) field. Given pairs of unaligned (at 

word level) source and target sentences, it outputs word 

alignments within each pair. GIZA++ treats the word 

alignment task as a statistical problem and, as such, it can 

be applied to other problems that can be described in 

similar terms. Rama et al. (2009) showed that GIZA++ 

can be successfully used to preprocess training data for 

letter to sound conversion systems. 

6. Bermuda training 

Before any phonetic transcription can be produced, the 

system has to be trained. Bermuda accepts two types of 

files (plain aligned files and GIZA++ output files) as input 

for the training process. 

Each line in the plain aligned files contains a word paired 

with its PT. Every symbol or set of symbols used for either 

the encoding of the word (characters/letters) or the 

encoding of the PT (phonemes) are <SPACE> separated. 

The paired elements are separated by a <TAB> character. 

The number of tokens of the elements in each pair must be 

equal. The word characters, which in reality do not have a 

corresponding symbol in the PT, are marked with the 

empty phoneme: “-”, designed to preserve the equality 

(lines 4 and 5 of figure 1). If one word character emits 

more than one corresponding symbol in the PT, the 

character “.” is used to link together the symbols (line 5 of 

Figure 1). In some cases, in which more word characters 

participate in forming a single sound, it is standard 

practice to associate only the last letter of the word with 

the PT and assign the empty phoneme to the other letters. 

a b a n d o n<TAB>ax b ae n d ax n 

a b a s i c<TAB>ax b ey s ih k 

a b a t e r<TAB>ax b ey t ax r 

a b a t t e d<TAB>ax b ae - t ih d 

a b u s e r<TAB>ax b y.uw z ax - 

 

Figure 1: Plain text training file 

One training method for Bermuda is by using the 

alignment output of the GIZA++ toolkit. We run GIZA++ 

for a primary letter to phoneme alignment with default 

parameters (10 iterations of IBM-1, HMM, IBM-3 and 

IBM-4 models). To do this, the data has to be split into 

two files, one corresponding to the words (source file) and 

the second one corresponding to their phonetic 

transcription (target file). Every word in the source file 

must be on a single line, and its letters have to be 

separated by <SPACE>. Every line in the source file has a 

corresponding line in the target file. 
 
source.txt 
f l u       (line 1) 

c a u s e      (line 2) 

t w a s       (line 3) 

s h i r e      (line 4) 

a b a n d o n     (line 5) 

 

target.txt 

f l uw       (line 1) 

k ao z       (line 2) 

t w oh z      (line 3) 

sh ia       (line 4) 

ax b ae n d ax n    (line 5) 

 

Before running GIZA++ we make sure it is compiled to 

be used outside of the Moses MT Toolkit. The following 

two lines should run successfully on the source and target 

files: 

plain2snt.out target.txt source.txt 

GIZA++ -S uk_beep.src.vcb -T target.vcb 

-C source_target.snt -p0 0.98 -o output 

One frequent mistake that GIZA++ makes is the forced 

NULL alignment on the phonemic side. Since an 

unaligned phoneme must be generated by one of the 

close-by letters, we devised a simple correction algorithm 

that looks at the letters that emitted the previous and the 

next phonemes and links the unaligned phoneme to the 

letter with which it was most frequently aligned to. In case 

of ties, it chooses the letter on the left side. Let’s take for 

example the word absenteeism (Figure 2). Between the 

phonetic symbols aligned to S and M that is ‘Z’ and ‘M’ 

respectively, we have the unaligned (or NULL aligned) 

symbol ‘AH’. In this case, we correct the alignment by 

assigning the phoneme ‘AH’ to the letter “S” because 

‘AH’ between ‘Z’ and ‘M’ was most frequently aligned 

with ‘S’ (next to ‘M’). 

 The correction algorithm also inserts the empty phoneme 

for every NULL aligned letter. In Figure 2, the letter at 

position 8 (bold font) does not emit any symbol and so, 

we insert the empty phoneme in the PT at the appropriate 

position. 

A  B S E N T E E I S M 

 

AE B S AH N T IY IH Z AH M 

A B S E N T E E I S M 

 

AE B S AH N T IY - IH Z AH M 

Figure 2: Alignment correction 

Figure 3 represents an overview of our training process 

(comprising of letter to phoneme alignments and building 

models for the primary ME classifier, the DLOPS method 

and the second layer classifiers). DLOPS is a data-driven 

method used for generating PTs of OOV words by 

optimally adjoining maximal spans of PTs found in a 

given dictionary, corresponding to adjacent parts of the 

input word (Boroş et al., 2012). This is the case when 

GIZA++ is used for initial letter to phoneme alignment. If 

Bermuda receives plain text aligned files, the first two 

steps are ignored and Bermuda skips directly to training 

the first-layer methods. After the initial training of the 

first layer methods, Bermuda runs through the entire 

training corpora and produces PTs for every word using 

the two primary prediction methods (PTC and DLOPS). A 

new set of training data is compiled based on the 



predictions made by the two methods and the real PTs in 

the training data. The second layer classifier (ERC) learns 

to correct the common mistakes of the two first-level 

methods, improving their accuracy. 

GIZA alignment

Alignment post-processing/correction

Training first-level methods

Running predictions on the training data

Compiling a new training corpora for the 

second-layer methods

Training second-layer methods

 

Figure 3: Training process 

7. Usage and Testing 

The current version of the system has been tested on two 

English dictionaries (BEEP UK – 250k words and 

CMUDICT US – 130k words) and on a Romanian 

dictionary extracted from the Romanian Speech Synthesis 

(RSS) Database (Stan et al., 2011). The training corpus 

was ten-folded and we ran Bermuda on every set while 

training on the other nine. The results show maximum 

performance for the PTC+ERC method as follows: 

CMUDICT 65%, the BEEP 71% and about 93% on the 

Romanian dictionary (the PT data for this dictionary has 

not been manually validated yet). 

System Word Accuracy 

on BEEP 

PTC+ERC 71.31% 

PTC 68.16% 

DLOPS+ERC 66.40% 

DLOPS 64.04% 

Table 1: Word accuracy figures for the methods 

implemented by Bermuda 

Table 1 shows an increase of about 2% to 3% in precision 

when chaining the second layer (ERC). These results are 

similar to those obtained by state of the art methods. 
Once training files are available, Bermuda can be trained 
using the following lines: 
 
bermuda.exe –gizatrain <giza A3 filename> 

[-test] 

bermuda.exe –plaintrain <plain aligned 

filename> [-test] 

 

If the –test option is specified, Bermuda splits the training 

corpora using the tenfold method. The data is divided into 

10 files (folds), each having approximately 10% of the 

original corpus. After the split is performed, the tool 

shows the accuracy obtained on each of the 10 folds while 

sequentially training on the other 9. Accuracy is measured 

for each method in particular, so the user will be able to 

know which one to use in the final implementation. 
The following command is used for running Bermuda: 

bermuda.exe –run –m<1…4> 

The second argument selects the method that will be used 

when predicting the PT of a given word. 1 corresponds to 

DLOPS method, 2 is used for PTC, 3 DLOPS+ERC and 4 

means PTC+MRC. After the data for the specified 

method is loaded, the queries for the PT can be entered. 

Each letter must be space separated as in the following 

example: 

Q:> a b s e n t e e i s m 

AE B S AH N T IY IH Z AH M 0.82% 

AE B S EH N T IY IH Z AH M 0.07% 

… 

The example above displays results obtained using 

DLOPS method. This is the only method that currently 

shows the confidence level for each phonetic transcription 

variant. 

Bermuda also has a custom evaluation method which 

takes as input a file with the same structure as the plain 

aligned training corpus and calculates its accuracy based 

on the data inside. This can be called using the following 

command: 

bermuda.exe –customtest <filename> 

8. Current state and future work 

This tool is currently available for online testing and can 

be downloaded from RACAI’s NLP Tools website
2
. The 

online version is trained for both Romanian (using a 

proprietary lexicon) and for English (using UK BEEP 

dictionary). It can produce phonetic transcriptions using 

any model specified (DLOPS, PTC, DLOPS+ERC or 

PTC+ERC). The phonetic representation is based on the 

symbols (e.g. “@” for the Romanian letter “ă”) employed 

by each individual training lexicon, but we plan on 

mapping these symbols to the International Phonetic 

Alphabet (IPA) in order to have a unified phonetic 

transcription system. Referring back to section 2, IPA 

transcription could improve current query suggestion 

systems. For example, users would be able to enter 

queries based on their native perception of the 

pronunciation of words (write queries in their native 

language based on their phonetic perception). The system 

would then be able to map the PT to that of any other 

language, thus finding the correct spelling suggestion. We 

call this type of query input perceptive search and we plan 

on doing further research in this area as well. We need to 

mention that Bermuda can be used to map back phonemes 

to words by inversing the lexicon files, a task which 

implies a different technique in order to cope with 

homophones. 
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9. Conclusions 

We have presented a data-driven tool for L2P conversion, 

which is part of the NLPUF package but can also be used 

individually. Training and usage of this tool are fully 

covered in this paper.  

Sections 2 and 8 show the role of phonetic transcription in 

improving text accessibility starting from its integration 

in TTS systems, spelling correction and/or alteration 

based on phonetic similarity and the possibility of using 

letter to phoneme conversion and phoneme to letter 

conversion for implementing perceptive search. 

Our future plans include further development and 

fine-tuning work on the current methods and a complete 

set of tests for experimental validation using baselines 

provided by other L2P systems (e.g. using the same 

dictionaries as other systems). We also want to map the 

available dictionaries to IPA and to implement and test a 

perceptive search method based on Bermuda. 

This tool will be free and available for download once the 

final tests are performed. 
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