
Bermuda, a data-driven tool for phonetic transcription of words

Tiberiu Boroș, Dan Ștefănescu, Radu Ion
Research Institute for Artificial Intelligence, Romanian Academy (RACAI)

Calea 13 Septembrie, nr. 13, Bucureşti, România

E-mail: {tibi, danstef, radu}@racai.ro

Abstract

The article presents the Bermuda component of the NLPUF text-to-speech toolbox. Bermuda performs phonetic transcription for
out-of-vocabulary words using a Maximum Entropy classifier and a custom designed algorithm named DLOPS. It offers direct
transcription by using either one of the two available algorithms, or it can chain either algorithm to a second layer Maximum Entropy
classifier designed to correct the first-layer transcription errors. Bermuda can be used outside of the NLPUF package by itself or to
improve performance of other modular text-to-speech packages. The training steps are presented, the process of transcription is
exemplified and an initial evaluation is performed. The article closes with usage examples of Bermuda.

Keywords: grapheme-to-phoneme, letter-to-sound, phonetic transcription, text-to-speech, data driven

1. Introduction

The last years have brought about a dramatic increase in

the performance of human-computer interaction tools and

techniques. This has naturally led to their successful

application in Information-Technology and related fields.

Consequently, accessibility to digital resources for elderly

or disabled people is enabled by diverse methods such as

better text organization and navigation, improved text

input methods or better text reading using text-to-speech

tools.

We present the Natural Language Processing Unified

Framework (NLPUF) for text-to-speech (TTS) synthesis,

which is part of the deliverables within the METANET4U

project
1
. It comprises of a set of NLP tools and a speech

synthesis module that can all be used together or as

standalone packages. Its functionality consists of text

normalization, phonetic transcription, homograph

disambiguation, prosodic synthesis and speech synthesis,

each of the functions being performed by different tools in

the package. The speech synthesis component uses

concatenative unit selection and can be easily integrated

with other speech synthesis engines such as MBROLA

(Dutoit et al., 1996) or HTS (Zen et al., 2007).

NLPUF is under development at the moment, but it is

nearing completion. Before a TTS system can synthetize

voice starting from arbitrary text, certain tasks have to be

performed by the Natural Language Processing (NLP)

module of the TTS system. The NLP module deals with

text normalization, phonetic transcription, prosody

analysis etc. Text normalization refers to the expansion of

acronyms, abbreviations, numeric or mathematical

expressions, etc., while prosody analysis tries to learn

how to mimic speech phenomena such as rhythm, stress

and intonation starting from text (Huang et al., 2001).

In this paper we focus only on the phonetic transcription

(PT) for out-of-vocabulary (OOV) words and the way PT

can be used to improve text accessibility. The phonetic

transcription of words can be obtained using lexicons for

1
 www.metanet4u.eu

known or common words in a target language, but there

will always be OOV words (technical terms, proper nouns

etc.) regardless of the lexicon’s size. In this situation, the

system needs a method to predict OOV words’

pronunciation. This is one of the fragile steps of the

pre-processing and analysis of text, because errors

produced by incorrect transcription predictions can

accumulate with errors from other modules (this is known

as error propagation) on the way to the speech

synthesizer (the part of the TTS that is responsible for the

actual voice synthesis), leading to misreads of the original

message.

Also, presence of foreign words inside the text (a common

issue in any type of text: news, novels, technical articles

etc.) increases the complexity of the problem. Thus,

phonetic transcription of OOV words would greatly

benefit from language identification, which is still an

unresolved problem for very short texts (da Silva and

Lopes, 2006; Vatanen et al., 2010).

In the case of NLPUF, phonetic transcription of OOV

words is performed by Bermuda, a data-driven tool that

uses Machine Learning (ML) techniques to best fit a

phonetic transcription given an input word. As any other

ML approach, it uses features, which in this case are based

solely on the letters and groups of letters within the input

word. While using more context sensitive data (part of

speech, syllabification etc.) may provide better results in

some cases, we intend to show that state of the art results

can be obtained without using such data. Such an

application is therefore much faster and does not require

additional resources. Moreover, homograph

disambiguation is not an issue here. Bermuda deals only

with OOV words, which means it is impossible to predict

that such words have two or more pronunciations that

distinguish between their senses. The task of homograph

disambiguation can only be performed on known words

and it is handled by a different component in our

framework.

www.metanet4u.eu

2. The role of phonetic transcription in
improving text accessibility

Phonetic transcription (PT) has an important role in any

TTS system. One of the objectives of speech synthesis

from text is to allow the user to fully understand the

message that is being transmitted. While prosody highly

contributes to understanding the message, PT also has a

notable impact. Incorrect PT can render an entire

fragment meaningless and mispronunciation can lead to

annoying results (e.g. the same word is mispronounced

again and again in a phrase or paragraph) even if the

information may sometimes be transmitted regardless of

small erroneous transcriptions. PT errors can also add up

to the prosody errors and have a negative impact on the

overall system performance.

Spelling correction or query alteration also link to text

accessibility when taking into account that most relevant

information found on the Internet is written in languages

of international use and not all users are native speakers of

such languages. Research has shown the possibility of

using phonetic similarity as a feature for spelling

correction (Li et al., 2006). A misspelled word can be

corrected by using its PT. Table 1 shows an example

where a misspelled word and its correct form produce

identical PTs.

 Word Phonetic transcription

Correct Conceive k ax n s iy v

Incorrect Conceiv k ax n s iy v

Table 1: PTs for words “conceive” and “conceiv”

produced by Bermuda

In section 8 we show another example where web query

alteration can benefit from the PT of words.

3. Related Work

Phonetic transcription in terms of letter-to-phoneme

conversion (L2P) can be a simple task for languages

where the relationship between letters and their phonetic

transcription is simple (languages that are preponderantly

characterized by having phonemic orthography, e.g.

Romanian) but for other languages it poses a set of

challenges. For example, current state of the art systems

for English phonetic transcription of OOV words have an

accuracy of 65% to 71% when used on the CMUDICT

dictionary (Jiampojamarn et al., 2008).

There are a series of different methods and approaches to

L2P conversion from context sensitive grammars to using

classifiers or techniques specific to part-of-speech

tagging.

A notable example of using a context sensitive grammar

for writing L2P rules (pertaining to English and French) is

given by Divay and Vitale (1997), although nowadays

automatically inducing L2P rules is the main route

followed by mainstream L2P research.

The Expectation-Maximization (EM) algorithm

(Dempster et al., 1977) (or variants of it) is used to find

one-to-one or many-to-many alignments between letters

and phonemes in (Black et al., 1998; Jiampojamarn et al.,

2008; Paget et al. 1998). The main idea of this algorithm

is that, certain pairs of letters and phonemes are much

more frequent than others and EM is employed in an

effort to automatically detect the most probable

alignments given a list of pairs of words and their

transcriptions as training data.

Another approach for PT uses Hidden Markov Models

(HMMs). Given the L2P rules (i.e. the probability of a

phoneme being generated by a letter and the probability of

occurrence of a phoneme sequence), the problem of

automatic PT can be restated as follows: find the optimum

sequence of hidden states (phonemes) that account for the

given observation (the OOV word that has been suitably

segmented for this task). Research of this approach has

been done by Taylor (2005) and Jiampojamarn et al.

(2008). One interesting conclusion of their research is that

more accurate results are achieved if the phonemic

substrings are paired with letter substrings. The reason for

this is that phonetic transcriptions are context dependent:

at any given moment, the phoneme to be generated is

dependent on the adjacent phonemes. Moreover, it also

depends on a contextual window of letters of the given

word (Demberg, 2007).

4. A general view on Bermuda

Bermuda implements 2 methods for the L2P conversion

task. The first one employs a Maximum Entropy (ME)

classifier (PTC) to predict the phonetic transcription of

every letter in the context (word) and uses a set of features

similar to the MIRA and Perceptron methods presented by

Jiampojamarn et al. (2008). The second one uses DLOPS

algorithm described in Boroş et al. (2012). Furthermore,

each of the methods has been improved by employing

another ME classifier (ERC) designed to correct common

L2P errors made by these two methods. In addition to the

features used by PTC, ERC uses new features based on

the already predicted phonemes which have become

available. In other words, Bermuda chains the first layer

prediction (PTC or DLOPS) to a second layer ME

classifier for error correction (ERC). This leads to an

accuracy increase of 2% to 7%.

We aim to show how Bermuda can be used outside of the

NLPUF package, as a stand-alone application, to improve

performance in other modular TTS packages.

5. Phonetic Transcription as an Alignment
Problem

All data-driven L2P systems require letter to phoneme

alignment before a model for phonetic transcription can

be created. This section presents a method for obtaining

such an alignment that is easy to implement. PT can be

viewed as a translation process from the written form of

the word (the “source language”) to its phonetic

representation (the “target language”) (Laurent et al.

2009). Because aligning between words and phonetic

transcriptions is similar to training a translation model, it

is possible to use a well-known tool, explicitly designed

for this kind of task: GIZA++ (Och and Ney, 2003).

GIZA++ is a free toolkit designed for aligning items in a

parallel corpus, often used in the Statistical Machine

Translation (SMT) field. Given pairs of unaligned (at

word level) source and target sentences, it outputs word

alignments within each pair. GIZA++ treats the word

alignment task as a statistical problem and, as such, it can

be applied to other problems that can be described in

similar terms. Rama et al. (2009) showed that GIZA++

can be successfully used to preprocess training data for

letter to sound conversion systems.

6. Bermuda training

Before any phonetic transcription can be produced, the

system has to be trained. Bermuda accepts two types of

files (plain aligned files and GIZA++ output files) as input

for the training process.

Each line in the plain aligned files contains a word paired

with its PT. Every symbol or set of symbols used for either

the encoding of the word (characters/letters) or the

encoding of the PT (phonemes) are <SPACE> separated.

The paired elements are separated by a <TAB> character.

The number of tokens of the elements in each pair must be

equal. The word characters, which in reality do not have a

corresponding symbol in the PT, are marked with the

empty phoneme: “-”, designed to preserve the equality

(lines 4 and 5 of figure 1). If one word character emits

more than one corresponding symbol in the PT, the

character “.” is used to link together the symbols (line 5 of

Figure 1). In some cases, in which more word characters

participate in forming a single sound, it is standard

practice to associate only the last letter of the word with

the PT and assign the empty phoneme to the other letters.

a b a n d o n<TAB>ax b ae n d ax n

a b a s i c<TAB>ax b ey s ih k

a b a t e r<TAB>ax b ey t ax r

a b a t t e d<TAB>ax b ae - t ih d

a b u s e r<TAB>ax b y.uw z ax -

Figure 1: Plain text training file

One training method for Bermuda is by using the

alignment output of the GIZA++ toolkit. We run GIZA++

for a primary letter to phoneme alignment with default

parameters (10 iterations of IBM-1, HMM, IBM-3 and

IBM-4 models). To do this, the data has to be split into

two files, one corresponding to the words (source file) and

the second one corresponding to their phonetic

transcription (target file). Every word in the source file

must be on a single line, and its letters have to be

separated by <SPACE>. Every line in the source file has a

corresponding line in the target file.

source.txt
f l u (line 1)

c a u s e (line 2)

t w a s (line 3)

s h i r e (line 4)

a b a n d o n (line 5)

target.txt

f l uw (line 1)

k ao z (line 2)

t w oh z (line 3)

sh ia (line 4)

ax b ae n d ax n (line 5)

Before running GIZA++ we make sure it is compiled to

be used outside of the Moses MT Toolkit. The following

two lines should run successfully on the source and target

files:

plain2snt.out target.txt source.txt

GIZA++ -S uk_beep.src.vcb -T target.vcb

-C source_target.snt -p0 0.98 -o output

One frequent mistake that GIZA++ makes is the forced

NULL alignment on the phonemic side. Since an

unaligned phoneme must be generated by one of the

close-by letters, we devised a simple correction algorithm

that looks at the letters that emitted the previous and the

next phonemes and links the unaligned phoneme to the

letter with which it was most frequently aligned to. In case

of ties, it chooses the letter on the left side. Let’s take for

example the word absenteeism (Figure 2). Between the

phonetic symbols aligned to S and M that is ‘Z’ and ‘M’

respectively, we have the unaligned (or NULL aligned)

symbol ‘AH’. In this case, we correct the alignment by

assigning the phoneme ‘AH’ to the letter “S” because

‘AH’ between ‘Z’ and ‘M’ was most frequently aligned

with ‘S’ (next to ‘M’).

 The correction algorithm also inserts the empty phoneme

for every NULL aligned letter. In Figure 2, the letter at

position 8 (bold font) does not emit any symbol and so,

we insert the empty phoneme in the PT at the appropriate

position.

A B S E N T E E I S M

AE B S AH N T IY IH Z AH M

A B S E N T E E I S M

AE B S AH N T IY - IH Z AH M

Figure 2: Alignment correction

Figure 3 represents an overview of our training process

(comprising of letter to phoneme alignments and building

models for the primary ME classifier, the DLOPS method

and the second layer classifiers). DLOPS is a data-driven

method used for generating PTs of OOV words by

optimally adjoining maximal spans of PTs found in a

given dictionary, corresponding to adjacent parts of the

input word (Boroş et al., 2012). This is the case when

GIZA++ is used for initial letter to phoneme alignment. If

Bermuda receives plain text aligned files, the first two

steps are ignored and Bermuda skips directly to training

the first-layer methods. After the initial training of the

first layer methods, Bermuda runs through the entire

training corpora and produces PTs for every word using

the two primary prediction methods (PTC and DLOPS). A

new set of training data is compiled based on the

predictions made by the two methods and the real PTs in

the training data. The second layer classifier (ERC) learns

to correct the common mistakes of the two first-level

methods, improving their accuracy.

GIZA alignment

Alignment post-processing/correction

Training first-level methods

Running predictions on the training data

Compiling a new training corpora for the

second-layer methods

Training second-layer methods

Figure 3: Training process

7. Usage and Testing

The current version of the system has been tested on two

English dictionaries (BEEP UK – 250k words and

CMUDICT US – 130k words) and on a Romanian

dictionary extracted from the Romanian Speech Synthesis

(RSS) Database (Stan et al., 2011). The training corpus

was ten-folded and we ran Bermuda on every set while

training on the other nine. The results show maximum

performance for the PTC+ERC method as follows:

CMUDICT 65%, the BEEP 71% and about 93% on the

Romanian dictionary (the PT data for this dictionary has

not been manually validated yet).

System Word Accuracy

on BEEP

PTC+ERC 71.31%

PTC 68.16%

DLOPS+ERC 66.40%

DLOPS 64.04%

Table 1: Word accuracy figures for the methods

implemented by Bermuda

Table 1 shows an increase of about 2% to 3% in precision

when chaining the second layer (ERC). These results are

similar to those obtained by state of the art methods.
Once training files are available, Bermuda can be trained
using the following lines:

bermuda.exe –gizatrain <giza A3 filename>

[-test]

bermuda.exe –plaintrain <plain aligned

filename> [-test]

If the –test option is specified, Bermuda splits the training

corpora using the tenfold method. The data is divided into

10 files (folds), each having approximately 10% of the

original corpus. After the split is performed, the tool

shows the accuracy obtained on each of the 10 folds while

sequentially training on the other 9. Accuracy is measured

for each method in particular, so the user will be able to

know which one to use in the final implementation.
The following command is used for running Bermuda:

bermuda.exe –run –m<1…4>

The second argument selects the method that will be used

when predicting the PT of a given word. 1 corresponds to

DLOPS method, 2 is used for PTC, 3 DLOPS+ERC and 4

means PTC+MRC. After the data for the specified

method is loaded, the queries for the PT can be entered.

Each letter must be space separated as in the following

example:

Q:> a b s e n t e e i s m

AE B S AH N T IY IH Z AH M 0.82%

AE B S EH N T IY IH Z AH M 0.07%

…

The example above displays results obtained using

DLOPS method. This is the only method that currently

shows the confidence level for each phonetic transcription

variant.

Bermuda also has a custom evaluation method which

takes as input a file with the same structure as the plain

aligned training corpus and calculates its accuracy based

on the data inside. This can be called using the following

command:

bermuda.exe –customtest <filename>

8. Current state and future work

This tool is currently available for online testing and can

be downloaded from RACAI’s NLP Tools website
2
. The

online version is trained for both Romanian (using a

proprietary lexicon) and for English (using UK BEEP

dictionary). It can produce phonetic transcriptions using

any model specified (DLOPS, PTC, DLOPS+ERC or

PTC+ERC). The phonetic representation is based on the

symbols (e.g. “@” for the Romanian letter “ă”) employed

by each individual training lexicon, but we plan on

mapping these symbols to the International Phonetic

Alphabet (IPA) in order to have a unified phonetic

transcription system. Referring back to section 2, IPA

transcription could improve current query suggestion

systems. For example, users would be able to enter

queries based on their native perception of the

pronunciation of words (write queries in their native

language based on their phonetic perception). The system

would then be able to map the PT to that of any other

language, thus finding the correct spelling suggestion. We

call this type of query input perceptive search and we plan

on doing further research in this area as well. We need to

mention that Bermuda can be used to map back phonemes

to words by inversing the lexicon files, a task which

implies a different technique in order to cope with

homophones.

2
 http://nlptools.racai.ro/

http://nlptools.racai.ro/

9. Conclusions

We have presented a data-driven tool for L2P conversion,

which is part of the NLPUF package but can also be used

individually. Training and usage of this tool are fully

covered in this paper.

Sections 2 and 8 show the role of phonetic transcription in

improving text accessibility starting from its integration

in TTS systems, spelling correction and/or alteration

based on phonetic similarity and the possibility of using

letter to phoneme conversion and phoneme to letter

conversion for implementing perceptive search.

Our future plans include further development and

fine-tuning work on the current methods and a complete

set of tests for experimental validation using baselines

provided by other L2P systems (e.g. using the same

dictionaries as other systems). We also want to map the

available dictionaries to IPA and to implement and test a

perceptive search method based on Bermuda.

This tool will be free and available for download once the

final tests are performed.

10. Acknowledgments

The work reported here was funded by the project

METANET4U by the European Comission under the

Grant Agreement No 270893.

11. References

Baayen, R., Piepenbrock, R., and Gulikers, L. (1995). The

CELEX lexical database. In Linguistic Data

Consortium, University of Pennsylvania, Philadelphia.

Black, A., Lenzo, K. and Pagel, V. (1998). Issues in

building general letter to sound rules. In ESCA Speech

Synthesis Work-shop, Jenolan Caves.

Boroş, T., Ştefănescu, D. and Ion, R. (2012). Data driven

methods for phonetic transcription of words. In the

13th Annual Conference of the International Speech

Communication Association (submitted).

Bosch, A., and Canisius, S. (2006). Improved morpho

phonological sequence processing with constraint

satisfaction inference. In Proceedings of the Eighth

Meeting of the ACL-SIGPHON at HLT-NAACL, pp.

41–49.

CMU. (2011). Carnegie Mellon Pronuncing Dictionary.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Content, A., Mousty, P., and Radeau, M. (1990). Une base

de données lexicales informatisée pour le français écrit

et parlé. In L’Année Psychologique, 90, pp. 551–566.

Da Silva, J. F., and Lopes, G. P. (2006). Identification of

document language is not yet a completely solved

problem. In Proceedings of CIMCA’06, pp. 212–219.

Dempster, A.P., Laird, N. M. and Rubin, D.B. (1977).

Maximum likelihood from in-complete data via the em

algorithm. In Journal of the Royal Statistical Society:

Series B, 39(1), pp. 1–38.

Demberg, V. (2007). Phonological constraints and

morphological preprocessing for grapheme-to-

phoneme conversion. In Proceedings of ACL-2007.

Divay, M. and Vitale, A. J. (1997). Algorithms for

grapheme-phoneme translation for English and French:

Applications. In Computational Linguistics, 23(4), pp.

495–524.

Dutoit, T., Pagel, V., Pierret, N., Bataille, F. and van der

Vrecken, O. (1996). The MBROLA Project: Towards a

set of high-quality speech synthesizers free of use for

non-commercial purposes. In ICSLP'96, pp. 1393–

1396.

Huang, X., Acero, A., and Hon, H. W. (2001). Spoken

Language Processing. Upper Saddle River, NJ:

Prentice-Hall.

Jiampojamarn, S., Cherry, C. and Kondrak, G. (2008).

Joint processing and discriminative training for

letter-to-phoneme conversion. In Proceedings of

ACL-2008: Human Language Technology Conference,

pp. 905–913, Columbus, Ohio.

Laurent, A., Deleglise, P. and Meignier, S. (2009).

Grapheme to phoneme conversion using an SMT

system. In Proceedings of the 10th Annual Conference

of the International Speech Communication

Association.

Li, M., Zhang, Y., Zhu, M. and Zhou, M. (2006).

Exploring distributional similarity based models for

query spelling correction. In Proceedings of the 21st

International Conference on Computational

Linguistics and the 44th annual meeting of the ACL, pp.

1025–1032.

 Och, F. J. and Ney, H. (2003). A Systematic Comparison

of Various Statistical Alignment Models. In

Computational Linguistics, 29(1), pp. 19–51.

Pagel, V., Lenzo, K. and Black, A. (1998). Letter to sound

rules for accented lexicon compression. In

International Conference on Spoken Language

Processing, Sydney, Australia.

Rama, T., Singh, A. K. and Kolachina, S. (2009).

Modeling Letter-to-Phoneme Conversion as a Phrase

Based Statistical Machine Translation Problem with

Minimum Error Rate Training. In Proceedings of the

2009 Named Entities Workshop, ACL-IJCNLP 2009,

pp. 124–127, Suntec, Singapore.

Stan, A.,Yamagishi, J., King, S. and Aylett, M. (2011).

The Romanian Speech Synthesis (RSS) corpus:

building a high quality HMM-based speech synthesis

system using a high sampling rate. In Speech

Communication, 53 (3), pp. 442–450.

Taylor, P. (2005). Hidden Markov Models for grapheme

to phoneme conversion. In Proceedings of the 9th

European Conference on Speech Communication and

Technology.

Vatanen, T., Jaakko Väyrynen, J. and Virpioja, S. (2010).

Language Identification of Short Text Segments with

N-gram Models. In Proceedings of the Seventh

International Conference on Language Resources and

Evaluation LREC'10.

Zen, H., Nose, T., Yamagishi, J., Sako, S., and Tokuda, K.

(2007). The HMM-based speech synthesis system

(HTS) version 2.0. In Proceedings of the 6th ISCA

Workshop on Speech Synthesis, pp. 294–299.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

